Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii
نویسندگان
چکیده
Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell's viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell's viper studied previously, we found 45-100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers.
منابع مشابه
Comparative analyses of toxin-associated gene homologs from an Old World viper, Daboia russelii
Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones. Additionally, in certain countries, Government permission is required to handle live snakes, making the process cumbersome and ti...
متن کاملPulmonary hemorrhage and the management following Russell’s viper (Daboia russelii) envenoming in Sri Lanka
متن کامل
Characterization of a Kunitz-type protease inhibitor peptide (Rusvikunin) purified from Daboia russelii russelii venom.
The snake venom may be considered as a potent source of untapped therapeutic proteins and peptides. The peptide mass fingerprinting and N-terminal sequence alignment of a 6.9kDa peptide named Rusvikunin from Daboia russelii russelii venom show the presence of putative conserved domains of the KU superfamily. Further, BLAST analysis of two of the de novo peptide sequences of Rusvikunin demonstra...
متن کاملA new C-type lectin (RVsnaclec) purified from venom of Daboia russelii russelii shows anticoagulant activity via inhibition of FXa and concentration-dependent differential response to platelets in a Ca2+-independent manner
متن کامل
Pharmacological properties and pathophysiological significance of a Kunitz-type protease inhibitor (Rusvikunin-II) and its protein complex (Rusvikunin complex) purified from Daboia russelii russelii venom.
A 7.1 kDa basic peptide (Rusvikunin-II) was purified from a previously described protein complex (Rusvikunin complex, consists of Rusvikunin and Rusvikunin-II) of Daboia russelii russelii venom. The N-terminal sequence of Rusvikunin-II was found to be blocked, but peptide mass fingerprinting analysis indicated its identity as Kunitz-type basic protease inhibitor 2, previously reported from Russ...
متن کامل